High Efficiency Accelerator Driven Reactor

Ganapati Rao Myneni

Accelerator Division, Jefferson Lab
&
Departments of Physics, Materials Science and Engineering and Engineering Physics, University of Virginia

Thorium Energy Alliance (TEA) Spring 2010 Conference
Google HQ, Mountain View, CA
March 29-30, 2010
Overview

- Brief History
- Initial Contacts with India – 2005-2006 (thorium)
- BARC – JLab MOA (CW SRF with low RRR ingot Nb-2007)
- HBNI – UVa MOA 2009
- DAE – Virginia Thorium Energy Discussions
- US – India Joint Workshop Committees
- Break Out Session – Energy Amplifier-Accelerator Transmutation of Waste
Brief Early History of ADS

- 1950 – U. E. O. Lawrence, High power accelerators for producing fissile materials
- 1952 – W. B. Lewis, proposed use of thorium with intense neutron generator
- 1992 – V. Bowman, Energy generation with ATW
- 1993 – C. Rubbia, Energy amplifier

Thorium – non proliferation, no melt down, safe and least NRC involvement
Department of Atomic Energy (DAE, Government of India) Institutions

- Tata Institute of Fundamental Research (A deemed University, 1943, Homi Bhabha)
 - TIFR-Hyderabad Center, Andhra Pradesh
- Bhabha Atomic Research Center (Homi Bhabha, AEET 1954, 1957 Nehru, 1967 Indira Gandhi)
 - BARC-Vizag Center, Visakhapatnam, Andhra Pradesh
- Saha Institute of Nuclear Physics
- Nuclear Power Corporation of India (NPCIL)
- Variable Energy Cyclotron Center (VECC)
- Tata Memorial Center
- Indira Gandhi Center for Atomic Research (IGCAR)
- Raja Ramanna Center for Advanced Technology (RRCAT)
- Institute of Mathematical Sciences
- Institute of Physics
- Harish-Chandra Research Institute
- Institute of Plasma Research (IPR – ITER partner Institution)

Except for TIFR and NPCIL – the rest are Constituent Institutes of Homi Bhabha National Institute (HBNI, a Deemed Government of India University)
World Thorium Resources

<table>
<thead>
<tr>
<th>Country</th>
<th>Reserves (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>300,000</td>
</tr>
<tr>
<td>India</td>
<td>290,000</td>
</tr>
<tr>
<td>Norway</td>
<td>170,000</td>
</tr>
<tr>
<td>USA</td>
<td>160,000</td>
</tr>
<tr>
<td>Canada</td>
<td>100,000</td>
</tr>
<tr>
<td>S. Africa</td>
<td>35,000</td>
</tr>
<tr>
<td>Brazil</td>
<td>16,000</td>
</tr>
<tr>
<td>Malaysia</td>
<td>4,500</td>
</tr>
<tr>
<td>Other Countries</td>
<td>95,000</td>
</tr>
<tr>
<td>World total</td>
<td>1,200,000</td>
</tr>
</tbody>
</table>

Dr. Banerjee
India’s Nuclear Energy R&D Programs

Three Stage Nuclear Power Programme - Present Status

Stage - I PHWRs
- 15 - Operating
- 3 - Under construction
- Several others planned
- Scaling to 700 MWe
- Gestation period has been reduced
- **POWER POTENTIAL ≈ 10,000 MWe**

Stage - II
- **Fast Breeder Reactors**
 - 40 MWth FBTR - Operating since 1985, Technology Objectives realized.
 - 500 MWe PFBR - Under Construction
- **POWER POTENTIAL ≈ 530,000 MWe**

Stage - III
- **Thorium Based Reactors**
 - 30 kWth KAMINI - Operating
 - 300 MWe AHWR - Under Development
 - **POWER POTENTIAL IS VERY LARGE**
 - Availability of ADS can enable early introduction of Thorium and enhance capacity growth rate.

World class performance

Globaly Advanced Technology

Globaly Unique
India’s Advanced Reactor

Advanced Heavy Water Reactor (AHWR)

- Vertical pressure tube.
- Boiling light water cooled.
- Heavy water moderated.
- Fuelled by $^{233}\text{U}-\text{Th MOX}$ and $\text{Pu-}\text{Th MOX}$.

Major Design Objectives

- Power output – 300 MWe with 500 m3/d of desalinated water.
- Core heat removal by natural circulation.
- A large fraction (65%) of power from thorium.
- Extensive deployment of passive safety features – 3 days grace period, and no need for planning off-site emergency measures.
- Design life of 100 years.
- Easily replaceable coolant channels.

Technology demonstration for large-scale thorium utilization

- Currently under Pre-Licensing Safety Appraisal by AERB.
- International recognition as an innovative design.

Thomas Jefferson National Accelerator Facility

Operated by the Jefferson Science Associates for the U.S. Department Of Energy

TEA 2010 Spring Conference Google HQ, Mountain View March 29 -30, 2010 Ganapati Myneni
Indian Nuclear Power Programme &
its linkage to ADS

S. Banerjee
Bhabha Atomic Research Centre
Mumbai, India
Schematic of ADS- energy balance

Accelerated protons
~ 10 MWt

Subcritical Core
Spallation target
neutrons
Target
~ 1000 MWt @
k_{eff} = 0.98

Accelerator
(LINAC or Cyclotron)
~20 MWe

Energy extraction
Efficiency = \eta_e
~ 300 MWe @
\eta_e = 0.33

GRID
~ 280 MWe

Fraction (1-f) of the energy
Fraction f of the energy back to drive accelerator
Ingot Niobium: Frontier Technology for Nuclear Power

Ganapati Rao Myneni

Accelerator Division, Jefferson Lab
&
Department of Physics, University of Virginia

Bhabha Centenary Symposium
TIFR, Mumbai, India
December 3-5, 2009
Initial vision

- Small Accelerator Driven Sub-critical Thorium System (AD-STS) on the grounds in the old reactor building for reactor physics and engineering, materials research and training

- Full fledged US facility 300 MWe AD-STS (Lake Anna – VA? or IDAHO National Lab?)

- Vision: India & US teams jointly work on implementing one each AD-STS in US and India
US-India Joint Workshop Committees

Program Committee:
Jack Dorning, UVa, Chair
Ganapati Myneni, JLab/UVa, Co-Chair
Ross Anderson, VCU
Roll Johnson, Muon Inc.
Geoff Krafft, JLab
Blaine Norum, UVa
Mark Pierron, VT
Bob Rimmer, JLab
Marcos Stuart, CBMM
Bruce Vogelaar, VT
John Wallace, Casting Analysis Corp. &
Several more from Indian Atomic Energy Labs

International Advisory Committee:
Srikumar Banerjee, Chairman, AEC-India
Carlo Rubbia, CERN
Jim Aaylor, Dean/SEAS, UVa
Charles Bowman, ADNA Corporation
Tadeu Carneiro, CEO/CMBM
Jack Dorning, UVa
Purshottam Das Gupta, Director-RRCAT
Andrew Hutton, AD/Accelerators, JLab
Frank Macrina, VPR-VCU
Baldev Raj, Director- GCAR
Amit Roy, Director-IUAC
Ratan Kumar Sinha, Director- Reactors, BARC
Tom Skalak, VPR-UVa
Bob Walters, VPR-VCU

Local Organization Committee:
Blaine Norum, UVa, Chair
Ganapati Myneni, JLab/UVa, Co-Chair
Roderick Hall, VT
Phil Parrish, UVa
Gary Tepper, VCU
Marissa Fazenbaker, (JLab Admin)
Beth Oser, (UVa Physics Admin)
Jeannie Reese (UVa Material Science Admin)
Energy amplifier and nuclear waste transmutation
break out session March 29, 2010 9 – 11 am

• A review of Accelerator Driven Systems - Richard Sah, Muons Inc.
• Gem*Star Science - Bruce Vogelaar, Virginia Tech
• Gem*Star Demonstration and Deployment - Charles Bowman, Accelerator
 Driven neutron Applications Corporation
• High Current Superconducting Linac Accelerator Driven System – Andrew
 Hutton, Jefferson Lab
• Economic and High Efficiency Ingot Niobium Cavities - Ganapati Myneni,
 Jefferson Lab/UVa
ADNA Corporation – VT GEM*STAR
Multiple Fuel Options – Extremely Versatile

High Efficiency & Economical

Depleted U
600,000 tons

Th

HEU W-Pu

Naval reactor spent fuel
10,000 tons?

DOE U
60,000 tons

Commercial reactor spent fuel
60,000 tons

Solar, etc.

Production of transportation fuel for cars, trucks, trains, airplanes

accelerator

Day

Night

GEM*STAR
multiple cycles
(at lower multiplication)

Significantly more energy extracted per long-lived waste produced.

Thermal reactor spent fuel
10,000 tons

Coal

Hydrogen